How to calibrate MYNTEYE by kalibr

Target

  • Calibrate the pose relationship between left and right camera
  • Calibrate the pose relationship left camera between and IMU

Preparation

  • Install kalibr:Refer to kalibr wiki and follow the steps to install
  • Calibration board: kalibr supports chessbord , circlegrid , aprilgrid ,choose aprilgrid here Calibration board file can be directly download , Or you can also generate calibration board by Kalibr tool.
$ kalibr_create_target_pdf --type 'apriltag' --nx 6 --ny 6 --tsize 0.08 --tspace 0.3

View parameters’ meanings by kalibr_create)target_pdf command

$ kalibr_create_target_pdf --h
usage:
    Example Aprilgrid:
        kalibr_create_target_pdf --type apriltag --nx 6 --ny 6 --tsize 0.08 --tspace 0.3
    Example Checkerboard:
        kalibr_create_target_pdf --type checkerboard --nx 6 --ny 6 -csx 0.05 --csy 0.1


Generate PDFs of calibration patterns.

optional arguments:
  -h, --help           show this help message and exit

Output options:
  output               Output filename
  --eps                Also output an EPS file

Generic grid options:
  --type GRIDTYPE      The grid pattern type. ('apriltag' or 'checkerboard')
  --nx N_COLS          The number of tags in x direction (default: 6)
  --ny N_ROWS          The number of tags in y direction (default: 7)

Apriltag arguments:
  --tsize TSIZE        The size of one tag [m] (default: 0.08)
  --tspace TAGSPACING  The space between the tags in fraction of the edge size
                      [0..1] (default: 0.3)
  --tfam TAGFAMILIY    Familiy of April tags ['t16h5', 't25h9', 't25h7',
                      't36h11'] (default: t36h11)

Checkerboard arguments:
  --csx CHESSSZX       The size of one chessboard square in x direction [m]
                      (default: 0.05)
  --csy CHESSSZY       The size of one chessboard square in y direction [m]
                      (default: 0.05)
  • Calibrate the intrinsic IMU parameters:kalibr requires imu data to be calibrated by intrinsic parameters by default.The intrinsic parameters calibration tool uses imu-tk .
  • Count imu data parameter
    • noise density
    • bias random walk

Using Allan analyzing tool imu_utils, We can get the characteristics of above imu data,and to format the output as imu.yaml

#Accelerometers
accelerometer_noise_density: 0.02680146180736048   #Noise density (continuous-time)
accelerometer_random_walk:   0.0026296086159332804   #Bias random walk

#Gyroscopes
gyroscope_noise_density:     0.008882328296710996   #Noise density (continuous-time)
gyroscope_random_walk:       0.00037956578292701033   #Bias random walk

rostopic:                    /mynteye/imu/data_raw      #the IMU ROS topic
update_rate:                 200.0      #Hz (for discretization of the values above)

Calibrate the pose relationship between left and right camera

  • Collect calibration images: kalibr supports the collection of the required calibration images through two ways:by rosbag or collect offline images . Using rosbag here for convenience,Reference link for collecting images.
  • Method of collecting images by rosbag :fix mynteye camera,move aprilgrid calibration board in the camera field of view
  • To increase the calibration time,try to use image acquisition data with lower frame rate,kalibr recommends using 4Hz frame rate,here uses 10hz .
  • MYNTEYE S series camera offers images at least 10Hz,You can use topic_tools to modify frequency,because using 10Hz requires more calibration time
  • Record static.bag : After fix the mynteye camera,start wrapper, record the topic of the left and right images to static.bag .
$ source wrappers/ros/devel/setup.bash
$ roslaunch mynt_eye_ros_wrapper display.launch
$ cd ~
$ mkdir -p bag
$ cd bag
$ rosbag record -O static_10hz /mynteye/left/image_raw /mynteye/right/image_raw #建议使用10hz,你也可以使用topic_tools发布4hz.
  • kalibr calibration:
$ kalibr_calibrate_cameras --target aprilgrid.yaml --bag ~/bag/static_10hz.bag --models pinhole-radtan pinhole-radtan --topics /mynteye/left/image_raw /mynteye/right/image_raw

View parameters’ meanings by kalibr_calibrate_cameras command

$ kalibr_calibrate_cameras --h

Calibrate the intrinsics and extrinsics of a camera system with non-shared
overlapping field of view.

usage:
  Example usage to calibrate a camera system with two cameras using an aprilgrid.

  cam0: omnidirection model with radial-tangential distortion
  cam1: pinhole model with equidistant distortion

  kalibr_calibrate_cameras --models omni-radtan pinhole-equi --target aprilgrid.yaml \
            --bag MYROSBAG.bag --topics /cam0/image_raw /cam1/image_raw

  example aprilgrid.yaml:
      target_type: 'aprilgrid'
      tagCols: 6
      tagRows: 6
      tagSize: 0.088  #m
      tagSpacing: 0.3 #percent of tagSize

optional arguments:
-h, --help            show this help message and exit
--models MODELS [MODELS ...]
                      The camera model ['pinhole-radtan', 'pinhole-equi',
                      'omni-radtan', 'pinhole-fov'] to estimate

Data source:
--bag BAGFILE         The bag file with the data
--topics TOPICS [TOPICS ...]
                      The list of image topics
--bag-from-to bag_from_to bag_from_to
                      Use the bag data starting from up to this time [s]

Calibration target configuration:
--target TARGETYAML   Calibration target configuration as yaml file

Image synchronization:
--approx-sync MAX_DELTA_APPROXSYNC
                      Time tolerance for approximate image synchronization
                      [s] (default: 0.02)

Calibrator settings:
--qr-tol QRTOL        The tolerance on the factors of the QR decomposition
                      (default: 0.02)
--mi-tol MITOL        The tolerance on the mutual information for adding an
                      image. Higher means fewer images will be added. Use -1
                      to force all images. (default: 0.2)
--no-shuffle          Do not shuffle the dataset processing order

Outlier filtering options:
--no-outliers-removal
                      Disable corner outlier filtering
--no-final-filtering  Disable filtering after all views have been processed.
--min-views-outlier MINVIEWOUTLIER
                      Number of raw views to initialize statistics (default:
                      20)
--use-blakezisserman  Enable the Blake-Zisserman m-estimator
--plot-outliers       Plot the detect outliers during extraction (this could
                      be slow)

Output options:
--verbose             Enable (really) verbose output (disables plots)
--show-extraction     Show the calibration target extraction. (disables
                      plots)
--plot                Plot during calibration (this could be slow).
--dont-show-report    Do not show the report on screen after calibration.

Output the following three files after finish calibration

  • camchain-homezhangsbagstatic_10hz.yaml
  • report-cam-homezhangsbagstatic_10hz.pdf
  • results-cam-homezhangsbagstatic_10hz.txt

Tip

If you use camera parameters in Vins,it would be better to choose the pinhole-equi model or the omni-radtan model.If you use camera parameters in Maplab,please choose pinhole-equi model

Calibrate the pose relationship between camera and IMU coordinate system

  • Collect calibration data: as calibrate the pose relationship of camera,Kalibr supports two ways to collect data,we still use rosbag here.
    • Method of collecting image: fix apilgrid calibration board, move camera
    • Make sure that the data collected is good:the brightness of the calibration board should be appropriate,too bright or too dark can’t guarantee the quality of data,meanwhile do not shake too fast to avoid blurring of the iamge.
    • Set the imu publishing frequency to 200Hz,image to 20Hz(recommended by kalibr)
    • Fully motivate each axis of the imu,for example ,3 actions on each axis,then in the “8-shaped” motion
  • Record camera and imu as dynamic.bag.
$ roslaunch mynt_eye_ros_wrapper display.launch
$ cd bag
$ rosbag record -O dynamic /mynteye/left/image_raw /mynteye/right/image_raw /mynteye/imu/data_raw #注意设置图像发布频率为20hz, imu发布频率为200hz
  • kalibr calibration:
$ kalibr_calibrate_imu_camera --cam camchain-homezhangsbagstatic_10hz.yaml --target aprilgrid.yaml --imu imu.yaml --time-calibration --bag ~/bag/dynamic.bag

View the parameters’ meanings by kalibr_calibrate_imu_camera command

$ kalibr_calibrate_imu_camera --h

Calibrate the spatial and temporal parameters of an IMU to a camera chain.

usage:
    Example usage to calibrate a camera system against an IMU using an aprilgrid
    with temporal calibration enabled.

    kalibr_calibrate_imu_camera --bag MYROSBAG.bag --cam camchain.yaml --imu imu.yaml \
            --target aprilgrid.yaml --time-calibration

    camchain.yaml: is the camera-system calibration output of the multiple-camera
                  calibratin tool (kalibr_calibrate_cameras)

    example aprilgrid.yaml:       |  example imu.yaml: (ADIS16448)
        target_type: 'aprilgrid'  |      accelerometer_noise_density: 0.006
        tagCols: 6                |      accelerometer_random_walk: 0.0002
        tagRows: 6                |      gyroscope_noise_density: 0.0004
        tagSize: 0.088            |      gyroscope_random_walk: 4.0e-06
        tagSpacing: 0.3           |      update_rate: 200.0

optional arguments:
  -h, --help            show this help message and exit

Dataset source:
  --bag BAGFILE         Ros bag file containing image and imu data (rostopics
                        specified in the yamls)
  --bag-from-to bag_from_to bag_from_to
                        Use the bag data starting from up to this time [s]
  --perform-synchronization
                        Perform a clock synchronization according to 'Clock
                        synchronization algorithms for network measurements'
                        by Zhang et al. (2002).

Camera system configuration:
  --cams CHAIN_YAML     Camera system configuration as yaml file
  --recompute-camera-chain-extrinsics
                        Recompute the camera chain extrinsics. This option is
                        exclusively recommended for debugging purposes in
                        order to identify problems with the camera chain
                        extrinsics.
  --reprojection-sigma REPROJECTION_SIGMA
                        Standard deviation of the distribution of reprojected
                        corner points [px]. (default: 1.0)

IMU configuration:
  --imu IMU_YAMLS [IMU_YAMLS ...]
                        Yaml files holding the IMU noise parameters. The first
                        IMU will be the reference IMU.
  --imu-delay-by-correlation
                        Estimate the delay between multiple IMUs by
                        correlation. By default, no temporal calibration
                        between IMUs will be performed.
  --imu-models IMU_MODELS [IMU_MODELS ...]
                        The IMU models to estimate. Currently supported are
                        'calibrated', 'scale-misalignment' and 'scale-
                        misalignment-size-effect'.

Calibration target:
  --target TARGET_YAML  Calibration target configuration as yaml file

Optimization options:
  --time-calibration    Enable the temporal calibration
  --max-iter MAX_ITER   Max. iterations (default: 30)
  --recover-covariance  Recover the covariance of the design variables.
  --timeoffset-padding TIMEOFFSET_PADDING
                        Maximum range in which the timeoffset may change
                        during estimation [s] (default: 0.01)

Output options:
  --show-extraction     Show the calibration target extraction. (disables
                        plots)
  --extraction-stepping
                        Show each image during calibration target extraction
                        (disables plots)
  --verbose             Verbose output (disables plots)
  --dont-show-report    Do not show the report on screen after calibration.
Output the follwing 4 files after finish calibration
  • camchain-imucam-homezhangsbagdynamic.yaml
  • imu-homezhangsbagdynamatic.yaml
  • report-imucam-homezhangsbagdynamic.pdf
  • results-imucam-homezhangsbagdynamic.yaml